DINITROGEN FIXATION CATALYZED BY THE REDUCED SPECIES OF $[Fe_4S_4(SPh)_4]^{2-}$ AND $[Mo_2Fe_6S_8(SPh)_9]^{3-}$

Koji TANAKA, Yoshiyuki HOZUMI, and Toshio TANAKA*

Department of Applied Chemistry, Faculty of Engineering,

Osaka University, Suita, Osaka 565

Dinitrogen can be reduced to NH $_3$ under the condition of controlled potential electrolyses in the presence of $[{\rm Fe}_4{\rm S}_4({\rm SPh})_4]^{2-}$ or $[{\rm Mo}_2{\rm Fe}_6{\rm S}_8({\rm SPh})_9]^{3-}$ in MeOH/THF or in H $_2{\rm O}$. The maximum current efficiency in the electrochemical reduction is 1.6 % for the reduction of N $_2$ in MeOH/THF and the total yield of NH $_3$ based on the cluster is 195 % for 4 d.

Recently, much attention has been paid to non-enzymatic model systems composed of molybdenum complexes and iron-sulfur clusters involving $\operatorname{Fe}_4\operatorname{S}_4$ core directing toward facile N_2 reduction under mild conditions as nitrogenase. The iron-sulfur cluster in such studies has been considered as only an electron transfer catalyst from reducing agents such as BH_4^- and $\operatorname{S}_2\operatorname{O}_4^{2-}$ to molybdenum complexes. $^{1-3}$ We found, however, that $\operatorname{C}_2\operatorname{H}_2$ is reduced by the electrochemically reduced species of $[\operatorname{Fe}_4\operatorname{S}_4(\operatorname{SPh})_4]^{2-}$ ($[\operatorname{4-Fe}]^{2-}$) as well as $[\operatorname{Mo}_2\operatorname{Fe}_6\operatorname{S}_8(\operatorname{SPh})_9]^{3-}$ ($[\operatorname{Mo-Fe}]^{3-}$) catalytically in MeOH/THF to give $\operatorname{C}_2\operatorname{H}_4$ selectively without evolving H_2 gas, and $\operatorname{C}_2\operatorname{D}_2$ is reduced by the same catalyst in $\operatorname{H}_2\operatorname{O}$ at pH 6.0 to afford $\operatorname{cis-C}_2\operatorname{D}_2\operatorname{H}_2$ stereoselectively. The similarity of these reactions to nitrogenase has driven us to study the reduction of N_2 by the same catalysts. This letter reports the reduction of N_2 by the electrochemically reduced species of $[\operatorname{4-Fe}]^{2-}$ and/or $[\operatorname{Mo-Fe}]^{3-}$ in protic solvents (Eq. 1).

$$N_2 + 6H^+ + 6e^- \longrightarrow 2NH_3$$
 (1)

The reduced species of the anionic clusters, $[4-Fe]^{n-}$ (n = 3, 4) and $[Mo-Fe]^{5-}$, were prepared by controlled potential electrolyses using a Hg working electrode, at the reduction potentials of $[4-Fe]^{2-}$ (2-/3-: -1.25 V, 3-/4-: -1.65 V vs. SCE)⁷⁾ or

[Mo-Fe] $^{3-}$ (4-/5-: -1.25 V vs. SCE) $^{7)}$ in a MeOH/THF solution or in an aqueous suspension containing the $[n-Bu_AN]^+$ salts of $[4-Fe]^{2-}$ or $[Mo-Fe]^{3-}$. Lithium chloride (0.5 mol dm $^{-3}$) and NaOH-H₃PO_A buffer were used as supporting electrolytes in MeOH/THF and in H2O, respectively. The reduction of N2 was carried out by bubbling N_2 gas purified through 10N $\mathrm{H}_2\mathrm{SO}_4$ with a flow rate of ca. 3 $\mathrm{cm}^3\mathrm{min}^{-1}$ into the working electrode cell. The effluent gas from the working electrode cell was trapped into 0.1N H₂SO₄. After the reaction was stopped, 1N H₂SO₄ (10 cm³) was added into the working electrode cell and the solution was evaporated to dryness under reduced pressure. The residue was alkalized by 2N NaOH (10 cm³), followed by vaccum distillation into a trap cooled by liquid nitrogen, and the amount of NH_3 was determined by the indophenol method. $^{8)}$ Ammonia absorbed in the 0.1N $\mathrm{H}_{2}\mathrm{SO}_{4}$ trap was analyzed similarly. Thus, $\left[4\text{-Fe}\right]^{4-}$ (16 µmole) prepared by the controlled potential electrolysis at -1.70 V vs. SCE in MeOH/THF (1:1 v/v) produced 2.5 μ mole NH_3 for 24 h at 25°C. Almost the same amount of NH_3 was produced when the [P(CH₂-Ph)Ph $_3$] $^+$ salt of [4-Fe] $^{2-}$ was used in place of the $[n-\mathrm{Bu}_4\mathrm{N}]^+$ salt, while in the absence of $[4\text{-Fe}]^{2\text{-}}$ no NH_3 has been detected either in the working electrode cell or in the acid trap. These results indicate that the nitrogen source to give NH, in MeOH/THF is not the $[n-\mathrm{Bu}_4\mathrm{N}]^+$ cation but dinitrogen. The current efficiency for the formation of NH_3 calculated from the Eq. 2, however, is quite low (< 0.1 %),

current efficiency =
$$\frac{\text{Moles of NH}_3 \text{ produced}}{\text{Coulombs consumed/(69480 x 3)}} \times 100$$
 (2)

suggesting that most of electrons transferred from the Hg electrode to $[4\text{-Fe}]^2$ were consumed for H₂ evolution. In biological N₂-fixation, about 75 % electrons transferred to nitrogenase are utilized for the N₂ reduction, the remainder being used for the reduction of protons to evolve H₂. 9) As described in the previous paper, 6 H₂ evolution from MeOH by $[4\text{-Fe}]^3$ and $[\text{Mo-Fe}]^5$ produced under the controlled potential electrolysis in MeOH/THF (1:1 v/v) is about one-sixth and one-twentieth the amounts of that by $[4\text{-Fe}]^4$, respectively. Thus, under the expectation to depress H₂ evolution, the reduction of N₂ by $[4\text{-Fe}]^3$ as well as $[\text{Mo-Fe}]^5$ (produced at -1.30 V vs. SCE) was examined. The results for the reduction of N₂ by these reduced species in MeOH/THF with various volume ratios are summarized in Table 1, which indicates that the current efficiency for the NH₃ formation by $[4\text{-Fe}]^3$ is apparently improved, although the amount of NH₃ produced in the reduc-

Catalyst ^{a)}	MeOH/THF	NH ₃	Current efficiency	NH ₃ /Catalyst
	v / v	μmole	ફ	mole/mole
[4-Fe] ^{3-b)} [Mo-Fe] ^{5-b)}	7 : 3	1.34	0.22	0.084
	5 : 5	2.67	0.67	0.17
	3:7	3.39	1.6	0.21
	1:9	1.36	1.3	0.085
	9:1	1.21	0.09	0.076
	7:3	2.56	0.18	0.16
	5 : 5	1.68	0.10	0.11
	3:7	0.99	0.51	0.06
None	5 : 5	≃0		

Table 1. Reduction of N_2 in MeOH/THF at 25°C for 24 h; LiCl (0.5 mol dm⁻³)

tion by either species is not so different from that by $[4-Fe]^{4-}$. Both the maximum current efficiency and the largest amount of NH₃ are obtained in the reduction by $[4-Fe]^{3-}$ in MeOH/THF with volume ratio 3:7, while the volume ratio of MeOH/THF to give maximum current efficiency is inconsistent with that to produce the largest amount of NH₃ in the reduction by $[Mo-Fe]^{5-}$ (Table 1).

Iron-proteins and molybdenum-iron-proteins may be both essential factors in biological N₂-fixation. The reduction of N₂, therefore, was examined under the controlled potential electrolysis of an equimolar solution of $[4-Fe]^{2-}$ and $[Mo-Fe]^{3-}$ at -1.30 V (vs. SCE) in MeOH/THF with mole ratio 3:7, but there has been no appreciable increase in the amount of NH₃ produced compared with that by $[Mo-Fe]^{5-}$ alone.

The reduction of N_2 was examined also by the cluster dispersed in water; a fixed amount of $[4\text{-Fe}]^{2\text{-}}$ dissolved in dimethylsulfoxide (0.5 cm³) was added to water in the working electrode cell containing Triton X-100 (0.8 mmol dm⁻³) as a surface active reagent in order to make the cluster disperse well. Such an aqueous suspension bubbled with N_2 at pH 7.0 adjusted with NaOH-H₃PO₄ evolved only H₂ violently under the controlled potential electrolysis at -1.40 V (vs. SCE), but no NH₃ has been detected for 24 h. At the initial pH 12.5, however, the electrolysis at the same potential produced about 1 µmole of NH₃ a day; 4.17 µmole of NH₃ was obtained for 4 d, though the current efficiency was very low (about one-twenty sixth of the

a) 16 μ mole. b) Produced at -1.30 V vs. SCE.

,						
Catalyst ^{a)} /μmole	Time h	NH ₃ µmole	Current efficiency	NH ₃ /Catalyst mole/mole		
[4-Fe] ³⁻ /16.0	96	4.17	0.06	0.26		
[Mo-Fe] 5-b) /14.0	48	4.60	0.07	0.33		
$[Mo-Fe]^{5-}/8.0$	72	6.99	0.07	0.87		
$[Mo-Fe]^{5-}/3.5$	96	6.81	0.07	1.95		
None	48	≃0				

Table 2. Reduction of N_2 in H_2O at 25°C; NaOH (6.3 x 10^{-2} mol dm⁻³); Triton X-100 (0.8 mmol dm⁻³)

maximum value in MeOH/THF), as shown in Table 2. The electrolysis of an aqueous suspension of [Mo-Fe] $^{3-}$ at the same potential produced more NH $_3$ than that of [4-Fe] $^{2-}$ (Table 2), indicating that [Mo-Fe] $^{5-}$ seems to be more effective than [4-Fe] $^{3-}$ toward the N $_2$ reduction in water, in contrast to MeOH/THF solutions. In the controlled potential electrolysis of the clusters dispersed in water, only the cluster anions in contact with Hg electrodes may be reduced and is effective to the N $_2$ reduction. Thus, a large portion of the cluster anions may not be available for the reduction of N $_2$. This assumption predicts that the yield of NH $_3$ increases with decreasing the amount of the clusters used for the reaction. In fact, the yield of NH $_3$ for 4 d under the condition of controlled potential electrolyses attained to 195 % when 3.5 µmole of [Mo-Fe] $^{3-}$ was used (Table 2), suggesting that [Mo-Fe] $^{5-}$ catalytically reduces N $_2$ to NH $_3$.

References

- G. N. Schrauzer, G. W. Kiefer, K. Tano, and P. A. Doemeny, J. Am. Chem. Soc., 96, 641 (1974).
- 2) G. N. Schrauzer, P. R. Robinson, E. L. Moorehead, and T. M. Vickrey, J. Am. Chem. Soc., 98, 2815 (1976).
- 3) N. Oguni, S. Shimizu, Y. Iwamoto, and A. Nakamura, Polym. J., 13, 845 (1981).
- 4) B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, *J. Am. Chem. Soc.*, 95, 531 (1973).
- 5) G. Christou, C. D. Garner, F. E. Mabbs, and T. J. King, J. Chem. Soc., Chem. Commun., 1978, 740.
- 6) K. Tanaka, M. Tanaka, and T. Tanaka, Chem. Lett., 1981, 895.
- 7) Measured in MeOH/THF (1:1 v/v).
- 8) Y. Morita and Y. Ogure, Nippon Kagaku Zasshi, 84, 816 (1963).
- 9) J. M. Rivera-Ortiz and R. H. Burris, J. Bacteriol, 123, 531 (1975).

a) Produced at -1.40 V vs. SCE. b) The $[P(CH_2Ph)Ph_3]^+$ salts.